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J. Phys. A.: Math. Gen. 19 (1986) 1589-1596. Printed in Great Britain 

The basis of three-particle hyperspherical harmonics in 
‘democratic’ variables 

M I Mukhtarova and V D Efros 
I V Kurchatov Atomic Energy Institute, Moscow, USSR 

Received 15 July 1985 

Abstract. A complete system of three-particle hyperspherical harmonics ( H H )  with orbital 
momenta L s 4 is constructed in an explicit form with separated rotational degrees of 
freedom. Formulae for any L values are given. Permutational and other properties of HH 
and a method of H H  orthonormalisation are considered. 

1. Introduction 

Let R be a hypersphere p = ( ~ ~ + y ~ ) ~ / ~ = p ~  in a six-dimensional space R , = { x , y } .  
Hyperspherical harmonics ( H H )  YK (R) are defined by the following two conditions: 
p K Y K ( R )  is a degree K polynomial and if K # K ’  

dR Y*,(R) YK(R) = 0 I 
(dR = p i 5 6 (  p - po) dx dy). As is well known the YK (a) functions are useful in many 
cases for the investigation and solution of dynamical three-body problems in quantum 
mechanics (cf e.g. Fano 1983) and for phenomenological analysis of three-particle 
reaction amplitudes. In such problems the above-mentioned vectors x, y mean the 
three-particle Jacobi coordinates 

(k4?  + ’: = is: + i s :  = ,s: + j s :  = P 2 )  

or the conjugated Jacobi momenta. In a relativistic three-particle amplitude case angular 
variables defined on R parametrise a hypersurface that corresponds to some fixed 
energy-momentum values and corresponding x, y vectors are only auxiliary (cf Efros 
1983). 

It is convenient to specify HH along with the K number by the rotational quantum 
numbers L and M. Five angular variables which parametrise the R hypersphere may 
include three Euler angles { w }  specifying space orientation of a three-particle system 
as a whole. For many applications it is convenient to construct H H  as an expansion 
in corresponding Wigner 9 functions 9 L M r ( w ) .  A list of references concerning the 
construction of such HH may be found in Mukhtarova and Efros (1983). In particular, 
large tables of such HH with LG 4 values for various fixed K values have been reported 
(Del Aguila and Doncel1980). However, general analytic formulae for HH with arbitrary 
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K values would be more convenient. Since L is generally related to integrals of motion 
of a problem and takes a limited set of values, formulae with fixed L values are 
convenient. For the L = 0 case such formulae were obtained by Gronwall (1937), for 
the L = 1 case by Zickendraht (1965) and Levy-Leblond and Levy-Nahas (1965). For 
the L = 2 case such formulae were obtained by Zickendraht (1965), however, within 
the framework of non-systematic HH classification. Using the approach described by 
Mukhtarova and Efros (1983), such formulae are obtained below for all L S  4 values, 
which is sufficient for the majority of applications. We use a systematic HH classification 
described in 9 2. In § 3 the main properties of the HH are described, with explicit 
expressions for the HH basis given in § 4 and a conclusion in § 5. 

2. General formulae 

The five angular variables parametrising the R hypersphere include Euler angles { w }  
and two scalar variables A and +. The { U }  angles are defined in a standard way by 
an orientation of unit vectors attached to a three-particle system relative to a laboratory 
coordinate system. Let z=y+ix ,  where x,y  are the vectors mentioned above. Then 
the A, + variables and the unit vectors ei are defined by the relations 

sin + exp(iA) = p-'z2 
e -1 - 2 [ p  cos(& - a r r ) ] - ' [ z  exp(-iA/2) + z *  exp(ih/2)] 

e2=4[p cos(f++av)]-'i[z exp(-iA/2) - z *  exp(iA/2)] 

e3 = [e, 9 e21 = (P' cos +)- 'ax,  Y l  
(1) 

with 0 6 + d irr, 0 d :A S v. We have dR = sin 9 cos + d+  dAdw. The { U } ,  A, II, vari- 
ables (the so-called 'democratic' variables (Smith 1960, 1962)) are simply transformed 
under particle permutations (see e.g. Mukhtarova and Efros 1983). 

A general form of the HH required is as follows (Zickendraht 1965, Levy-Leblond 
and Levy-Nahas 1965): 

where M '  takes only values of the same parity as the K value. The f( $) functions are 
to be determined. When applying an orthogonal transformation 

x + x  cos cp+y sin cp y+-xsincp+ycoscp (3) 
we have, as seen from ( l ) ,  ++ +, e, + e ,  A + A +2q. This transformation leads to 
Y&+ YyLM exp(2ivcp) in (2) that elucidates the meaning of the index v. 

The HH of the equation (2) form which we are constructing are defined by the 
condition that up to a multiplier, pKYYLM polynomials with M = L are harmonic 
projections (Vilenkin 1965) of the polynomials 

9%4(5 z*)(z2)r(z*2)s (4) 

~ ? L ( G  z*) = C (pmlqm2 I L M ) 9 p m , ( z ) ( 9 ) q m 2 ( z * )  (5) 

with 

m l + m 2 = M  

K = ( p +  q )  +(2r+2s)  2v = ( p  - q ) +  (2r -2s) 2 a = p - q  
(6) 
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P + 4  K - L even 
K - L odd. 

We have K 3 L or K 2 L +  1 in the case of equations (7) and (8) respectively. For 
L = 0, K values may be even only. Equation (6) elucidates the meaning of the index 
a in ( 2 ) .  As seen from (6), the a values that are possible for a given L value are as 
follows: 2a = L, L - 2 , .  . . , - (L -2 ) ,  -L  in the case of equation ( 7 )  and 2 a  = 
L -  1, L-3 , .  . . , - ( L - 3 ) ,  - ( L - 1 )  in the case of equation (8). The v values possible 
for given K,  L, a values may be readily obtained from (6) if one writes 2 v  = 2 a  + 2 v s  
taking into account that the 2vs values are equal to K - L, K - L -  
4, . . . , -( K - L - 4), -( K - L )  in the case of equation (7) and that they are equal to 
( K  - L -  l ) ,  ( K  - L-5) ,  . . . , - ( K  - L-5) ,  - ( K  - L -  1) in the case of equation (8). 

3. Symmetrisation, orthogonalisation and reality properties 

One can see from (4)-(6) that 

( 9 )  - ( - 1 ) K - L y - 0 .  -U. 
Y Y L M ~ ~ ~ ~ *  - K L M  

Performing the transformation z e z *  in (1) and ( 2 )  and comparing the result with (9) 
we obtain 

&?,I "M( II, ) = ( - 1 ) K E L M , (  $1. 

[ Y Y L M ( f i ) ] *  = (-1) MY-" K i -  M ( f i 1 .  

(10) 

(11) 

On the other hand, from (4) and (6) it follows that 

The comparison of (11) with ( 1 0 )  shows the functions fK& to be real. 

the H H  of ( 2 )  with the required symmetry properties 

Here ($) is a particle transposition. Taking into account the relations ( 2 ) z  = z*, 
(&t* = z and (9), one may write (12) as follows: 

In the case of two identical particles it is convenient to use linear combinations of 

A 

(12) y ( + ) a u  - '[ 1 + ( 5  y(-W K L M  - - i-'i[ 1 - ( U ) ]  Y Y ' M .  K L M  - 2  v ) l Y Y L M  

The right-hand side of (13) includes the a, v and -a,  -U indices simultaneously. 
Therefore, to obtain a complete system of the HH it is sufficient to confine ourselves 
for example to the HH with v 2 0  in the right-hand side of ( 1 2 )  with the additional 
condition a 2 0 for the v = 0 case. It will be used below. 

In the case of all three particles being identical the HH of ( 1 2 )  and (13) are known 
to form irreducible representations of a three-particle permutation group. In the 2 v  = 0 
(mod3) cases Y','1; is a symmetrical function and Ys i ;  is an antisymmetrical 
function with respect to three-particle permutations. In the 2 v  = 1 (mod 3)  and 2 v  = 2 
(mod 3)  cases the pair of functions (Yg&', Y&iZ) form the two-dimensional rep- 
resentation of a permutation group. The standard basis of this representation (Hamer- 
mesh 1964) corresponds to the (Y(K+!Z, Y k i Z )  pair in the 2 v  = 1 (mod 3) case and 
to the ( Y g i Z ,  -YLlZ)  pair in the 2 v = 2  (mod 3 )  case. This can easily be seen if 
one takes into account that the cyclic permutation (123) is a particular case of the 
transformation of (3) .  
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Taking (11) into account, it is easy to find that for the basis of (13), the matrix 
elements (ME)  of the parity and rotation invariant Hamiltonian are real?. The same 
also holds true if spin variables are involved provided the ME between even and odd 
L values vanish. And if they do not vanish all the ME may be made real, for example, 
by making the redefinition Y;;YLM + i YYLM for odd L values and using the functions 
of type (13). The transition from the HH of (2) to that of (13) ensures the ME mentioned 
to be real in the non-identical particle case as well. 

The HH of (2) are mutually orthogonal if some of their indices K ,  L, M, U are 
different. The same holds true for the HH of (13) if U 2 0 is meant in the designation 
of Y E & ‘  as was said above. (The number of HH in each group of mutually non- 
orthogonal H H  with the same K ,  L, M, U values is approximately equal to L.) 

To perform a complete orthonormalisation of the HH set Y g i g  it is sufficient to 
calculate their overlap integrals (01) with different a values. These 01 are expressed 
with the or 

Y$LL(R) Y;;YLM(R) dR = [a’a;  KvL] J 
for the HH of (2).  We have 

y(  +) LI ‘V*  

K L M  (R) YLig(Rn) dR = 0 J 
[a’a; KUL] u > o  

a ‘a; KOL] * [a’,  - a ;  KOL])  U = 0. 
Ygi&”*(R) YZig (R)  dR = I 

The orthonormalised HH may be written, for example, as determinants involving the 
HH Y g & ‘  and the 01 of (15) (Higher transcendentaIfunctions 1953, 5 10.1). 

TO calculate the 01 of (14) we first integrate in dh and dw 

where t = cos(Z+). It is not difficult to show that Fn( t )  is a polynomial in t of n = [ K / 2 ]  
degree ([. . . ]  denotes an integer part). Since the integrand is a polynomial the exact 
value of 01 in (16) is given by the relation 

N 

[a‘a; KuL] = wiFn( t i )  
i = l  

where ti and wi are abscissas and weights of the Gauss quadrature formula and the 
N value is an integer exceeding f( n - 1). On the other hand, for values of L C  3 ,  01 

of (15) were calculated by Mukhtarova and Efros (1979) in an explicit formS. The 
HH of (2) differ from that of Mukhtarova and Efros (1979) by a constant factor and 

?The ME independence on M should be used and the substitution M -P - M should be made. 
$There is a misprint in 01 ( 1 1 ;  K u 2 )  of that paper. The (K + 2 u )  factor should be placed outside the braces. 
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5. Conclusion 

In conclusion we write down the general formula for FKlM. In the case of even K - L 

~~M(ICI)=[(L+M)!(L-M)!~1'2[(2L)!]-1/2 p Z M ( $ ) x  GXKO;Y($) (19) 
%=-LIZ 

Table 1. Even K - L .  
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Table 2. Odd K - L. 

m 

(21) 
v - x l , L - m + i )  GFL(I4) = (-l)"(sin 14)1"-x1 a ( m )  b( i ,  (cos 2 4 )  

m = m ,  i=O 

m, = $(la + X I  - E )  m2 = f ( ~ -  la - X I  - E )  (22) 

m !r ( m + E + t )  

(23) 
( m + f ( a  + % + E )  m -;(a t L - a  + x  - E )  1 ( I +  m - L ) !  

$ L + f f  
a ( m ) =  

b( i, m )  = ( - l ) j (  I +  i ) ! [ (  m - i )  !i!r( i +  E +;)I-'. 
In the above expression E = 0 if the Q + x value is even and E = 1 if the CY + x value is 
oddt .  The n and 1 quantities are defined in (18a ) .  The summation in (20) is under 
the conditions 

k , +  n ,  = f L +  x 

k ,  + k2 = f ( L +  M )  

k2 + n,  = f L - x 

n,  + n2 = ;( L - M ) .  

Three out of the four conditions of (24) are independent, so in the sum of (20) we 
have only one independent variable. 

+In the paper by Mukhtarova and Efros (1983) there is a misprint in the definition of E .  
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The expression for rgLM in the case of odd K - L is obtained from (19)-(24) by 
means of the following substitutions. In (19), in the summation, the limits become 
L+ L- 1. For the qFM(+) function defined by (20) and (24) the substitution should 
be qFM( +) + 4 cos +(P:-,,~(+). In addition, in the expression for mz in (22) and in 
the binomial coefficients of (23) substitution L-. L- 1 should be made. The n and I 
values in (21) and (23) are defined in (18b). 
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